尽管深度学习已经在人工智能领域做出重大贡献,但这项技术本身仍存在一项致命缺陷:需要大量数据的加持。深度学习领域的先驱者乃至批评者已经就此达成共识——事实上,正是由于可用数据量有限加上处理大规模数据的计算能力…
半导体是数字时代的一项基础技术。美国硅谷的名字正是源自于此。过去半个世纪以来,计算技术的革命改变着社会的方方面面,而半导体技术正是这场革命的核心。
自英特尔1971年推出全球第一个微处理器以来,计算能力一直以令人惊叹的步伐发展演进着。根据摩尔定律,当前的计算机芯片比50年前的芯片在功能上强大数百万倍。
尽管数十年来处理能力飞速增长,但直到现在,计算机芯片的基本体系结构仍然没有太大改变。很大程度上说,芯片的创新,需要进一步缩小晶体管的体积,让集成电路可以容纳更多晶体管。数十年来,英特尔和AMD等厂商通过提高CPU性能而取得了长足的发展,被Clayton Christensen视为“持续的创新”。
今天,这种情况正在发生着巨大的变化。人工智能(AI)引发了半导体创新的“新黄金时代”——机器学习带来独特的市场需求和无限的机会,第一次激发了企业家们,去重新思考芯片架构的基本原则。
他们的目标,是设计一种专为AI设计的新型芯片,为下一代计算提供动力,这也是当前所有硬件领域最大的市场机遇之一。在计算技术发展的历史中,主流的芯片架构一直是CPU。如今,CPU无处不在,它为笔记本电脑、移动设备和大多数数据中心提供动力。
深度学习需要迭代执行数百万甚至是数十亿个相对简单的乘法和加法步骤。深度学习以线性代数为基础,在根本上是基于试错法的:对参数进行调整,对矩阵进行乘法运算,随着模型自身的不断优化,在整个神经网络中反复进行数字求和。
未来几年,下一代芯片将塑造人工智能领域的雏形和轨迹。用Yann LeCun的话来说:“硬件能力...激励但却限制了AI研究人员想象并追求的想法。各种我们可以使用的工具正在不断刷新我们的想法,这一点我们不得不承认。”
云计算公司
2021-11-26T09:17:49.180
价格:0.00
优惠价格:0.00
前一篇:如何构建全场景智慧生活?